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Abstract 

Topological indices (TIs) have been used to study structure-activity relationships 
(SAR) with respect to the physical, chemical, and biological properties of congeneric 
sets of molecules. Since there are many TIs and many are correlated, it is important that 
we identify redundancies and extract useful information from TIs into a smaller number 
of parameters. Moreover, it is important to determine if TIs, or parameters derived from 
TIs, can be used for global SAR models of diverse sets of chemicals. We calculated 
seventy-one TIs for three groups of molecules of increasing complexity and diversity: 
(a) 74 alkanes, (b) 29 alkylbenzenes, and (c) 37 polycyclic aromatic hydrocarbons 
(PAHs). Principal components analysis (PCA) revealed that a few principal components 
(PCs) could extract most of the information encoded by the seventy-one TIs. The 
structural basis of the first few PCs could be derived from their pattern of correlation 
with individual TIs. For the three sets of molecules, viz. alkanes, alkylbenzenes and 
PAHs, PCs were able to predict the boiling points reasonably well. Also, for the combined 
set of 140 chemicals consisting of the alkanes, alkylbenzenes and PAHs, the derived 
PCs were not as effective in predicting properties as in the case of individual classes 
of compounds. 

1. Introduction 

The  last two decades witnessed an upsurge o f  interest in applicat ions o f  graph 
theory in chemis t ry  [ 1 - 2 1  ]. Constitutional formulae o f  molecules  are chemical  graphs 
where  vert ices represent  the set o f  atoms and edges represent  chemical  bonds [13]. 
The  pat tern o f  connectedness  o f  atoms in a molecule  is preserved by  const i tut ional  
graphs. A graph (or  more  correct ly,  non-directed graph) G = [V, E] consists o f  a finite 

nonempty  set V o f  points together  with a prescribed set E o f  unordered pairs o f  distinct 
points o f  V [22]. A structural model assigns to the points o f  G a realizat ion in some 
applied field and each e lement  o f  E indicates a pair  o f  entities (e lements  o f  the 
structural  model )  which  are in the finite nonempty  i rref lexive symmetr ic  binary 
relat ion descr ibed by G [23]. For  example,  when e lements  o f  the set V symbol ize  
atomic cores without  va lence  electrons and the e lements  o f  E represent  cova len t  two- 
electron bonds,  G is the molecular  graph or  constitutional graph o f  a covalent  chemical  
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species. Such a graph can represent structural formulae for a large number of organic 
compounds. Since more than 90% of chemical compounds described so far are either 
organic or contain organic ligands, such a graph has been found to be useful in 
chemistry [24]. The edge set need not always represent a covalent bond. In fact, 
elements of E may symbolize almost any type of bond, e.g. ionic bond, coordinate 
bond, hydrogen bond or weak bonds representing transition states of SN 2 reaction, 
etc. [25-27].  If the interaction between a pair of atoms is asymmetric, e.g. in the 
case of sufficiently polar covalent bonds, hydrogen bond donor acidity, hydrogen 
bond acceptor basicity or charge transfer complex formation, the bonding pattern can 
be represented by a binary relation which is antireflexive and asymmetric [6]. Further 
refinement could be achieved through the assignment of weights to the vertices or 
edges [13], and use of multiple edges between a pair of atoms held together both by 
sigma and pi bonds. Evidently, a weighted pseudograph appears to be the most 
general model capable of symbolizing the bonding pattern of a large number of 
organic and inorganic chemicals. 

Chemists have long relied on visual perception to relate various aspects of 
constitutional graphs to observable phenomena. However, a clear and quantitative 
understanding of the structural basis of chemistry necessitates the use of precise 
mathematical techniques. In recent years, applications of matrix theory, group theory, 
and information theory to chemical graphs have produced results which are important 
in chemistry [4 ,6 ,9-11,13,  19,28-31]. The power of graph-theoretic formalism in 
chemistry is evident from its successful applications in chemical documentation, 
isomer discrimination and characterization of molecular branching, enumeration of 
constitutional isomers associated with a particular empirical formula, calculation of 
quantum chemical parameters, structure-physicochemical property correlations, and 
chemical structure- biological activity relationships [ 1 - 21 ]. 

Mathematical characterization of a chemical structure may be accomplished by 
a matrix, a set of numbers or a single numerical index [13]. For example, the 
adjacency matrix A(G), the distance matrix D(G), and the incidence matrix T(G) of 
a chemical graph G uniquely determine molecular topology. Among the different 
matrices used for the representation of chemical structure, the adjacency matrix has 
been more frequently used in chemistry [13]. However, the adjacency matrix poses 
a serious problem in chemical documentation because, as the size of the graph 
increases, they require a disproportionately large number of operations for the testing 
of graph isomorphism. Specifically, n 2 × n! operations are required to determine whether 
two graphs G~ and G 2 with n vertices are isomorphic [13]. Another limitation of 
matrices is that they cannot be used as structural descriptors in the correlation or 
prediction of properties. Therefore, one of the cherished objectives of graph-theoretic 
research has been the discovery of a graph property, preferably a single numerical 
characteristic or a set of numbers derived from graphs, which would not only be 
easier to handle than the adjacency matrix itself, but also uniquely related to molecular. 
topology. Unfortunately, in spite of numerous attempts, attainment of this goal has 
remained elusive. 
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In chronological order, Spialter [25-27] was the first to search for a graph 
invariant which could uniquely characterize molecular topology. A graph invariant 
is a graph-theoretic property which is preserved by isomorphism [13,22]. Spialter 
[25-27] asserted that the characteristic polynomial of the adjacency matrix or atom 
connectivity matrix of a molecule is uniquely related to its topology. This notion was, 
however, contradicted by later researchers, who found that nonisomorphic graphs 
may possess identical characteristic polynomials [32-34]. These graphs are called 
isospectral or cospectral graphs [13]. Later, Randid [35] conjectured that for tree 
graphs, collections of distance degree sequences (DDS) were sufficient to determine 
isomorphism. Subsequently, it was reported that neither DDS nor PDS (path degree 
sequence) could uniquely characterize the topology of tree graphs [36, 37]. More recently, 
Randid [38] developed a single numerical index, the molecular identification number, 
which was successful in the unique characterization of the topology of a relatively 
diverse set of structures, including constitutional isomers and cyclic analogs. However, 
a counter-example, i.e. different chemical structures with the same identification 
number, has already been reported [38,39]. 

Under these circumstances, there are three distinct trends in chemical graph- 
theoretic index research: (a) the simultaneous use of more than one index, i.e. a 
superindex in order to better characterize chemical structure as compared to a single 
index [40], (b) development of indexes with high discriminating power [38,41,42], 
and (c) extraction of useful information from a collection of indices already defined 
in the literature [43-46]. 

2. System complexity, reductionism and structure-activity relationship (SAR) 

Use of topological indices (TIs) in SAR may be clearly understood through a 
formal exposition of the structure-property similarity principle - the central paradigm 
of SAR [6,47,48]. Figure 1 represents an empirical property as a function 
a :  C ---) ~ which maps the set C of compounds into the real line ~. A nonempirical 
SAR may be looked upon as a composition of a description function /3~:C---) D 
mapping each chemical structure of C into a space of nonempirical structural descriptors 
(D) and a prediction function fl2:D---) ~ which maps the descriptors into the real 
line. When [a(C) - [32 ill(C)] is within the range of experimental errors, we say that 
we have a good nonempirical predictive model. On the other hand, the property-activity 
relationship (PAR) is the composition of 01: C ---) M which maps the set C into the 
molecular property space M and 02: M ~ / R  mapping those molecular properties into 
the real line/R. PAR seeks to predict one property (usually a complex property) of 
a molecule in terms of another (usually simpler) property. The latter group of properties 
may consist either of a number of experimentally determined quantities (e.g. melting 
point, boiling point, vapor pressure, partition coefficient) or substituent constants or 
solvatochromic parameters (e.g. steric, electronic, hydrophobic, charge transfer substituent 
constants, hydrogen bond donor acidity, hydrogen bond acceptor basicity). 
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) 

Fig. 1. Composition functions for structure-activity 
relationship (SAR) and property-activity relationship (PAR). 

PAR using a calculated property (e.g. calculated partition coefficient, log P, 
octanol-water)  may be looked upon as a mapping 02 71 ,61: C ~ / R ,  which is a 
composition of ,61, 71 : D ---) M mapping the descriptor space into the molecular property 
space (e.g. calculation of log P from fragments using additivity rule), and 02, as described 
above. 

Both in drug design and in predictive toxicology, SAR is an explosive problem. 
In drug design, one can synthesize a large number of derivatives from a "lead" 
structure. It is not unusual that one has to test 200,000 or more chemicals to discover 
a molecule that is marketable [49]. In many cases, one might be interested to know 
the property of  a molecule not yet synthesized. Then the only solution is to estimate 
properties using theoretical parameters which can be calculated for any arbitrary 
chemical structure, real or hypothetical. The situation is no different in the risk 
assessment of  chemicals. More than nine million chemicals are listed in the Registry 
of Chemicals of the Chemical Abstract Service and out of  these, about 76,000 are 
in daily use [50]. We need to know a large number of properties and activities (or 
endpoints) of  these chemicals in order to perform a reasonable risk assessment. 
Table 1 gives a partial list of endpoints necessary for pharmacological/toxicological 
evaluation of chemicals. Although many of the properties listed in table 1 can be 
determined experimentally, the combination of  these properties and the number of  
candidate chemicals is a combinatoric explosion! Cost and time limitations will not 
allow us to test a large fraction of existing chemicals in a rigorous way. Therefore, 
there is a need to develop procedures which can rapidly screen chemicals for their 
toxicological properties and allow us to focus scarce resources on chemicals with the 
greatest potential risk.. 
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Table 1 

Important SAR endpoints 

Physicochemical Pharmacological/Toxicological 

Molar volume 
Boiling point 
Melting point 
Vapor pressure 
Water solubility 
Dissociation constant (pKa) 
Partition coefficient 

: Octanol-water  (log P) 
: Ai r -water  
: Sediment-water  

Reactivity (electrophile) 

Macromolecule level 
: Receptor binding (KD) 
: Michaelis constant (Kin) 
: Inhibitor constant (Ki) 
: DNA alkylation 
: Unscheduled DNA synthesis 

Cell level 
: Salmonella mutagenicity 
: Mammalian cell transformation 

Organism level (acute) 
: Algae 
: Invertebrates 
: Fish 
: Birds 
: Mammals 

Organism level (chronic) 
: Bioconcentration 
: Carcinogenicity 
: Reproductive toxicity 
: Delayed neurotoxicity 
: Biodegradation 

Ecosystem level 
: ? ?  

A closer look at the properties of table 1 will show that they belong to different 
levels of molecular and biological organization. Prediction of any endpoint using 
SAR techniques is based on the implicit reductionistic assumption, which may be 
expressed as [51]: 

"Given any physico-chemical system S, however complex, there exists 
a physically effective resolution of S (or a set of such resolutions) into 
fractional subsystems such that (i) each fractional subsystem in the 
resolution can be precisely characterized (in the customary physico- 
chemical sense), and (ii) any property of S can be reconstructed from 
the properties of the fractional subsystems." 

It has been pointed out by Rosen [51] that systems with a high degree of 
controlability cannot in general be effectively fractionated into subsystems satisfying 
the above conditions. 

On the other hand, there has been extensive discussiofi of " emergen t  proper t i e s" ,  

by which is meant properties of whole systems which cannot effectively be predicted 
from the properties of simpler subsystems or more precisely, that certain resolutions 



248 S.C. Basak et al., Predicting properties of molecules 

into fractional subsystems do not satisfy the above assumption. Indeed, some authors 
[52] have gone so far as to claim that most interesting biological properties are 
emergent in this sense, and are not reducible to, or derivable from, the kind of 
knowledge with which physicists have ordinarily been satisfied. Such claims mean, 
in essence, that if the above hypothesis is true at all, the required resolutions must 
be produced by entirely novel means. 

In spite of the above limitations, we believe that in many cases systems can 
be resolved (at least to a first-order approximation) into non-interacting parts. Von 
Neumann [53], however, argued that there is a level of complexity below which the 
world behaves with regularity, but above which entirely new behaviors appear. In 
this sense, complex systems are counter-intuitive, i.e. their behavior deviates from 
what common sense suggests. 

In SAR, where we are interested in explaining the behavior of complex systems 
(properties of molecules or organisms, or more complex reality like communities or 
ecosystems) in terms of behaviors of simpler subsystems (properties of substructures, 
properties of total molecular structure, or properties of simpler biological systems), 
the reductionist approach may lead to a few difficulties: 

I. The chosen subsystems are incapable of predicting the behavior of the complex 
system; the predictive capability is highly uncertain. 

II. There is reasonable predictability in a narrow range, but the model fails to 
account for situations which are diverse. 

III. One class of subsystems is capable of predicting only one property and fails 
in predicting another property of the same system. • 

Situation I arises in the case of predicting carcinogenicity of chemicals. Even 
a c~3mbination of calculated structural parameters, physicochemical properties, and 
a range of genotoxic effects of chemicals at the level of macromolecules and simpler 
model biological systems does not adequately predict the carcinogenic effects of 
those chemicals in higher organisms [55]. This is probably because the gap in the 
level of complexity between the system property (carcinogenicity) and properties of 
predictor subsystems is so high that many aspects of system complexity are lost in 
the process of abstraction. A similar situation may arise in the assessment of ecotoxical 
risk of chemicals, where toxic effects on simpler systems, e.g. an organism, microcosm, 
or mesocosm, might not be able to predict population, community or ecosystem-level 
effects of chemicals. 

Situation II is observable where there is reasonable success in predicting 
properties for a narrow range of systems, but the predictability gradually fades as the 
range broadens. An example may be the success of prediction of aquatic toxicity 
(LCso) of a particular class of chemicals, e.g. narcotics, uncouplers of oxidative 
phosphorylation in fathead minnow, using lipophilicity [56]. When chemicals of 
different modes of action are taken together, the predictive power of lipophilicity 
diminishes. 
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Situation III arises when a particular type of reductionist abstraction is useful 
in predicting a particular property X of the system, whereas another abstraction is 
necessary for another property Y. For example, connectivity index correlates well 
with the boiling point of alkanes, whereas Balaban's index (J) correlates highly with 
the octane number of alkanes. For a given set of alkanes, boiling point and octane 
number are not significantly correlated with each other [38]. This situation is explained 
by the fact that the selected set of invariants (subsystem) used for the calculation of 
the connectivity index is different from those used for calculating the J index, although 
they are derived from the same set of alkanes (system). 

Prediction of a very complex property, e.g. the carcinogenic potential of chemicals, 
is zero level (or partial) SAR where structural variables comprise a subset of predictors 
and we have very little confidence in the success of the model. As we move to less 
complex properties like bioconcentration factor or acute toxicity, we are more successful 
in quantitative prediction of properties with greater confidence. Finally, with well- 
defined physicochemical properties, viz. boiling point or lipophilicity (Kow, octanol-  
water partition coefficient), we have good structural models which might be called 
quantitative SAR or QSAR. Figure 2 gives a schematic view of the spectrum of SAR 
- from qualitative to quantitative SAR. At the level of QSAR, one would be interested 
to know the relationship between predictors and properties, i.e. whether the property 
is additive, multiplicative, constantive or derivative [57,58]. 

3. Quantitation of structure and graph invariants 

In the context of molecular science, the various concepts of molecular structure 
(e.g. classical valence bond representation, various chemical graph-theoretic 
representations, ball and spoke model of a molecule, representation of the molecule 
by minimum energy conformation, semi-symbolic contour map of a molecule, or 
symbolic representation of chemical species by Hamiltonian operators) are model 
objects [59] derived through different abstractions of the same chemical reality or 
molecule [60, 61 ]. In each instance, the equivalence class (concept or model of molecular 
structure) is generated by selecting certain aspects while ignoring some unique properties 
of those actual events. This explains the plurality of the concept of molecular structure 
and their autonomous nature, the word autonomous being used in the sense that one 
concept is not logically derived from the other [60]. 

Any concept of molecular structure is a hypothetical sketch of the organization 
of molecules. Such a model object is a general theory and remains empirically untestable. 
A model object has to be grafted onto a specific theory to generate a theoretical 
model [59] which can be empirically tested. For example, when it was suggested by 
Sylvester [62] in 1878 that the structural formula of a molecule is a special kind of 
graph, it was an innovative general theory without any predictive potential. When the 
idea of combinatorics was applied on chemical graphs (model object), it could be 
predicted that "there should be exactly two isomers of butane (C4Hlo)" because "there 
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are exactly two tree graphs with four vertices" when one considers only the nonhydrogen 
atoms present in C4H10 [24]. This is a theoretical model of limited predictive potential. 
Although it predicts the existence of chemical species, given a set of molecules, e.g. 
isomers of hexane (C6H14), the model is incapable of predicting any property. This 
is because of the fact that any empirical property P maps a set of chemical structures 
into the set/R of real numbers and thereby orders the set empirically. Therefore, to 
predict the property from structure, we need a nonempirical (structural) ordering 
scheme which closely resembles the empirical ordering of structures as determined 
by P [6,47]. This is a more specific theoretical model based on the same model object 
(chemical graph) and can be accomplished by using specific graph invariant(s). 

The predictive potential of a theoretical model depends both on: (1) efficacy 
of representation of the relevant aspects of reality by the model object,.and (2) optimal 
treatment of the model object by appropriate mathematical theories. Effective prediction 
also depends on the quality of available data and the level of complexity of the 
property of interest. 

In view of the pressing need of development of SARs for predicting a plethora 
of endponts, it is desirable to use easily calculable structural parameters as the first 
approach. In recent years, methods based on chemical graph theory have emerged as 
important tools in biomedicinal and toxicological SAR. Graph invariants have been 
used in isomer discrimination, ordering of structures, structure-property relationship, 
and chemical structure-biological activity relationships [1-21,63]. In the latter two 
areas, numerical graph invariants (or topological indices) have been used mainly in 
correlating properties of different groups of congeners. 

However, some important questions regarding the nature and utility of topological 
indices (TIs) remain unanswered: 

(a) Since many of the available TIs are intercorrelated, can we extract useful 
information from TIs for practical use? 

(b) Can we use TIs to order molecules and predict properties of structurally diverse 
sets of chemicals? 

In an attempt to answer these questions, we calculated a large number of TIs 
(vide infra) for three structurally diverse groups of molecules. We used principal 
components analysis (PCA) to extract useful information from TIs into a low-dimensional 
space consisting of principal components (PCs) that explain a large fraction of the 
variance in the original data. We studied the utility of TIs vis-a-vis PCs derived from 
them in correlating properties of different groups of molecules. Finally, we attempted 
to analyze which aspects of molecular structure are encoded by different PCs. 

4. Calculation of parameters 

4.1. CALCULATION OF WIENER INDEX (W) AND CONNECTIVITY INDICES 

The topological parameters used in this paper may be conveniently derived 
from the adjacency matrix A(G) or the distance matrix D(G) of a chemical graph G. 
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1 2 3 

4 

G 
1 

Fig. 3. Labeled hydrogen-suppressed graph of isobutane. 

The adjacency matrix A(GI) and the distance matrix D(G1) of the labeled graph 
G 1 (fig. 3) of  isobutane are given below: 

1 

A(G1) = 2 
3 
4 

(1) (2) (3) (4) 

0 1 0 0 

1 0 1 1 
0 1 0 0 
0 1 0 0 

1 

D(G1) = 2 
3 
4 

(1) (2) (3) (4) 

0 1 2 2~  

J 
1 0 1 1 
2 1 0 2 " 
2 1 2 0 

From the adjacency matrix of a graph with n vertices it is possible to calculate 
S i, the degree of the ith vertex, as the sum of all entries in the ith row: 

ai = ~ aij. 
j= l  

Zero-order connectivity index ° Z is defined [12,64]: as 

(1) 

o z = ~(~)-~/2. 
i 

Randie's connectivity index 1Z is defined as [4]: 

(2) 

lz = ~ (ai ,~j)-'2. 
all edges 

(3) 
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A generalized connectivity index h Z considering paths of the type v o, v 1 . . . . .  Vh of 
length h in the molecular graph is calculated as [12,64]: 

hZ = . . .  6 h) - I / 2 ,  (4) 

where the summation is taken over all paths of length h. 
Cluster, path-cluster, and cyclic types of simple connectivity indices are calculated 

using the method of Kier and Hall [12,64]. 
Valence connectivity indices are based on vertex-weighted graphs, where the 

weight S~ of the ith vertex is calculated as follows [12,64]: 

= . - z  v -  1) ,  (s) 

where Z v is the number of valence electrons and Z i is the atomic number of the atom 
represented by the ith vertex of the chemical graph and h i is the number of hydrogen 
atoms attached to it. Valence connectivity indices hZv are calculated by replacing 8i 
in eqs. (2)-(4) with 8 v. It is to be noted, however, that in the case of certain atoms, 
e.g. chlorine, bromine, iodine, fluorine, sulfur, etc., the S~ values used are derived 
empirically through calibration with physicochemical properties [12, 64]. The physical 
and/or graph-theoretic basis for these empirical adjustments remains far from clear. 

The K h (h = 0, 1 . . . . .  10) parameters used in this paper represent the number 
of occurrences of paths of length h in the hydrogen-depleted molecular graph of G. 
K o is the number of vertices and K 1 is the number of edges of G. Higher-order K h 

terms can be calculated using graph-theoretic algorithms. 
W is calculated as: 

1 
w = ~ ~_~dii = ~_,h. gh ,  (6) 

t ,J h 

where gh is the number of unordered pairs of vertices whose distance is h. 

4.2. CALCULATION OF MOLECULAR COMPLEXITY INDICES 

Molecular complexity indices comprise another set of descriptors from 
molecular graphs [9, 11,16, 28-31,41 ]. The science of information theory has grown 
mainly out of the pioneering studies of Shannon [65], Wiener [66], Ashby [67], and 
Kolmogorov [68]. There is more than one version of information theory [69]. In 
Shannon's [65] statistical information theory, information is measured as reduced 
uncertainty of the system. In the algorithmic theory of Kolmogorov [68], the quantity 
of information is defined as the minimal length of a program which allows a one- 
to-one transformation of an object (set) into another. In applying information-theoretic 
formalism on chemical graphs, one looks upon the information content (or complexity) 
of a graph as a measure of its degree of variety or heterogeneity, as suggested by 
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Ashby [67]. An appropriate set S o f  n elements is derived from a molecular 
graph G depending on certain criteria. On the basis of an equivalence relation defined 
on A, the set A is partitioned into equivalence classes A i of order ni (i = 1, 2 . . . . .  h, 
~,i ni = n). A probability scheme is then assigned to the set of equivalence classes: 

A 1, A2 . . . . .  Ah, 

Pl ,  P2 . . . . .  Ph, 

where Pi = n i /n ,  ni and n being the cardinalities o f A  i and A, respectively. The mean 
information content (or complexity) of an element of A is defined by Shannon's [65] 
relation: 

I C  = - ~.~Pi log2 Pi . (7) 
i 

The logarithm is taken at base 2 for measuring the information content in bits. The 
total complexity of the set A is then n times IC.  

It is to be noted that the complexity of a real object or a model object is not 
uniquely defined. While there could be more than one way of defining a model 
object [59, 60] corresponding to the same piece of reality, complexity of the same 
model object may vary depending on the nature of the equivalence relation. In 
science, we deal with equivalence classes of events generated by grouping actual 
events and ignoring, at the same time, some unique properties of those events [60]. 
For example, when A represents the vertex set of a chemical graph G, two methods 
of partitioning have been widely used: (a) chromatic-number coloring of G, where 
two vertices of the same color are considered equivalent, and (b) determination of 
the transitive sets or orbits of the automorphism group of G, whereafter vertices are 
considered equivalent if they belong to the same orbit [70-73]. 

Rashevsky [74] symbolized molecules by simple linear graphs and calculated 
molecular complexity. In this approach, two vertices u and v of a graph G are said 
to be topologically equivalent if and only if for each neighboring vertex u i (i = 1, 2 . . . . .  k) 

of the vertex u there is a distinct neighboring vertex v i of the same degree for the 
vertex v. Subsequently, various authors have computed complexity of molecules 
where linear graphs [28,41,70-74] or multigraphs [75] with indistinguishable vertices 
were used to symbolize the chemical species. On the other hand, to account for the 
unique nature of atoms and their bonding pattern in a molecule, Sarkar et al. [30], 
Roy et al. [31], and Basak et al. [20] calculated complexity of graphs on the basis 
of equivalence relations where both the nature of the atom (vertex) and the number 
and chemical nature of bonded neighbors of all atoms are taken into account. This 
was accomplished by defining open spheres for all vertices of the molecular 
graph [76]. If r is any nonnegative real number and v is a vertex of the graph G, then 
the open r-sphere S ( v ,  r) is defined as the subset of V ( G )  consisting of all vertices 
v i such that d ( v ,  v i) < r. Obviously, S(v ,  O) = 0 ,  S ( v ,  r) = v for 0 < r < 1, and S(v ,  r)  
= (v) u Fl(v) = N l ( v )  for 0 < r < 2. One can construct open r-spheres of each vertex 
of G for all integral values of r, 0 _< r < p. For a particular value of r, the collection 
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of all such open spheres S(v ,  r), where v runs over the entire vertex set V, forms a 
neighborhood system of  the vertices of G. A suitably defined equivalence relation 
can then partition V into disjoint subsets based on the equivalence of  nature, 
connectedness, and bonding pattern of neighbors up to rth order neighborhoods [31]. 
It is noteworthy that this approach incorporates the effects of  distant neighbors (i.e. 
neighbors of  immediately bonded neighbors) on an atom or a reaction center. After 
partitioning of the vertices for a particular order (r) of neighborhood, IC r is calculated 
by eq. (7). Subsequently, Basak, Roy and Ghosh [29] defined another information- 
theoretic measure, structural information content (SICr), which is calculated as: 

SICr  = ICr/ log2 n, (8 )  

where IC  r is calculated by eq. (7) and n is the total number ol; vertices of the graph. 
It is noted that SI G is related to Brillouin's [77] measure of  redundancy of a system. 
Another information-theoretic invariant, complementary information content ( C I G )  

was defined as [78]: 

CIC r = log 2 n - ICr. (9) 

The Wiener index W [75], and the information-theoretic indices l~Vand 
are calculated from the distance matrix of chemical graphs [ 13]. The set of topological 
indices used in this paper are shown in table 2. Topological parameters were calculated 
by the computer program POLLY [79] where SMILES line notation [80] is the input. 

Table 2 

Definition and symbols for graph invariants 

W 

IC, 

SIC r 

CIC r 

hZp c 

hz~ 

hZ~H 
tq 

Half-sum of the off-diagonal elements of  the distance matrix of  a graph. 

Information index for the magnitudes of the distances between all possible pairs of  vertices 
of  a graph. 

Mean information index for the magnitude of the distance. 

Mean information content or complexity of a graph based on the rth (r = 0, 1 . . . . .  6) order 
neighborhood of  vertices in a graph. 

Structural information content of a graph based on the rth (r = 0, 1 . . . . .  6) order neighbor- 

hood of  vertices. 

Complementary information content of a graph G calculated from the rth (r = 0, 1 . . . . .  6) 
order neighborhood of  vertices. 

Path terms of  hth order (h = 0, 1 . . . . .  6) calculated from t~ values. 

Cluster terms of  hth order (h = 3 . . . . .  6) based on 6 values. 

Path-cluster terms of  hth order (h = 4 . . . . .  6) calculated for simple graphs. 

Chain or cycle terms of  different order (h = 3 . . . . .  6) based on 6 values. 

Valence connectivity type path terms of hth order (h = 0, 1 . . . . .  6) calculated from ~ values. 

Valence connectivity type cluster terms of hth order (h = 3 . . . . .  6) based on ~ values. 

Valence connectivity type path-cluster terms of  hth order (h = 4 . . . . .  6). 

Valence connectivity type chain or cycle terms of  hth order (h = 3 . . . . .  6). 

Number of  paths of  length h (/I = 0, 1 . . . . .  10) in the hydrogen depleted graph. 
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5. Statistical analysis 

We calculated TIs (table 2) for three different sets of compounds consisting 
of 37 polycyclic aromatic hydrocarbons, 29 alkylbenzenes, and 74 alkanes, respectively. 
Two statistical methods, viz. multiple regression analysis and principal components 
analysis (PCA) were used for analysis of the data. 

5.1. MULTIPLE REGRESSION ANALYSIS 

We used the maximum N2 improvement method [81] to identify prediction 
models. This method finds the "best" one variable model, the "best" two variable 
model and so forth for the prediction of properties. Analyses of the algorithmically- 
defined variables were exploratory in the sense that several models (e.g. combinations 
of variables) were examined to identify combinations of variables with good prediction 
capabilities. In all regression models developed, we examined a variety of statistics 
associated with the residuals, e.g. the Wilks-Shapiro test for normality [82] and 
Cook's D statistic for outliers [83], to obtain the most reasonable model. 

5.2. PRINCIPAL COMPONENTS ANALYSIS (PCA) 

The data for each of the four sets of chemicals analyzed in this paper may be 
viewed as n (number of chemicals) vectors in p (number of calculated parameters) 
dimensions. The data for each set can be represented by a matrix X which has n rows 
and p columns. For all the compounds, the number of calculated parameters was 71 
(TIs of table 2). Each chemical is therefore represented by a point in/R 71. If each 
chemical could be represented in ~72, then one could plot and investigate the extent 
of relationship between individual parameter and molecular properties. In N71, such 
a simple analysis is not possible. However, since many of the TIs are highly inter- 
correlated [1,43-45],  the points in/R 71 c a n  likely be represented by a subspace of 
fewer dimensions. The method of principal components analysis @CA) or the Karhunen- 
Lo6ve transformation is a standard method for reduction of dimensionality [84-86]. 
The first principal component (PC) is the line which comes closest to the points in 
the sense of minimizing the sum of the squared Euclidean distances from the points 
to the line. The second PC is given by projections onto the basis vector orthogonal 
to the first PC. For points in/R p, the first r principal components give the subspace 
which comes closest to approximating the n points. The first PC is the first axis of 
the points. Successive axes are major directions orthogonal to previous axes. The PCs 
are the closest approximating hyperplane and because they are calculated from 
eigenvectors of a p x p matrix, the computations are relatively accessible. However, 
there are important scaling choices, because PCs are scale dependent. To control this 
dependence, the most commonly used convention is to rescale the variables so that 
each variable has mean zero and standard deviation one. The covariance matrix for 
these rescaled variables is the correlation matrix. 
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In addition to changes in linear scaling, nonlinear changes in scale such as 
logarithmic scale affect the PCA. Outliers will have a large effect on a best fitting 
plane when using Euclidean distance. For distributions which are positive and highly 
skewed by large values, a logarithmic transformation can be useful in reducing the 
importance of outliers. For the data in this investigation, the indices have been 
transformed by taking the log of the index plus one and then standardizing to mean 
zero and variance one. 

No scaling convention for the original variables or the PCs is by definition 
correct. The task is to find a convention which works for the problem at hand. The 
choice made in this investigation was to standardize the log transformed indices and 
to use standardized principal components. 

Another choice in the reduction of dimensionality is to choose the number of 
principal components retained. Using standardized variables, the variances of  the 
unstandardized PCs are given by their eigenvalues, and the sum of the eigenvalues 
is p, the trace of the correlation matrix or the sum of the variances of the individual 
standardized variables. If all p standardized variables were uncorrelated, all eigen- 
values would be 1.0. The eigenvalue of a PC divided by p is referred to as the variance 
explained by that PC. The cumulative variance explained by the first r PCs is the 
sum of their eigenvalues divided by p. The hope of PCA is to explain a large percentage 
of the total variance using a small number of PCs. In choosing the number of PCs 
retained, there are a number of possible conventions. The convention chosen here 
was to retain the PCs with eigenvalues greater than one [86]. 

6. Results 

In this paper we analyzed three sets of chemicals in an attempt to investigate 
the extent algorithmically derived structural parameters are capable of predicting 
molecular properties. 

6.1. ALKANES 

Table 3 gives values of boiling points of 74 alkanes, the data being taken from 
the collection of Needham et al. [1]. Table 4 summarizes the result of PCA, which 
shows that the first three PCs explain 92.9% of the variance in the original data. The 
results of multiple regression analysis for the prediction of boiling point using PCs 
derived from TIs are shown in table 5. It is evident that PCs correlate highly with 
the boiling point data. Table 6 presents correlation coefficients of the first three PCs 
(PC1-PC3) with the ten mostly correlated indices. The first PC is highly correlated 
with K 1, CIC o, I~,  W, 1 Z, 2 Z, SICo and K o parameters. These parameters are related 
to the size of  the molecular graph. The second PC is highly correlated with a group 
of complexity parameters, viz. IC2, IC3, SIC2, SIC3, CIC2, CIC3, which measure the 
degree of  heterogeneity of atomic environments in the molecule. The third PC is 
mainly correlated with SIC 1 and higher-order terms like 3Zc and K 5. 
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Table 3 

Boiling points and predicted boiling points for 74 alkanes 

Boiling point Predicted 
Observation Name" [°C] boiling point b 

1 2 - 88.6 - 103.0 
2 3 - 42.1 - 51.4 
3 4 0.5 - 2.2 
4 2M3 - 11.7 - 6.7 
5 5 36.1 40.2 
6 2M4 27.8 29.6 
7 22MM3 9.5 24.0 
8 6 68.7 75.8 
9 2M5 60.3 62.0 

10 3M5 63.3 61.9 
11 22MM4 49.7 57.7 
12 23MM4 58.0 64.0 
13 7 98.4 104.9 
14 2M6 90.0 94.4 
15 3M6 91.8 94.6 
16 3E5 93.5 88.0 
17 22MM5 79.2 86.0 
18 23MM5 89.8 90.5 
19 24MM5 80.5 85.0 
20 33MM5 86.1 86.6 
21 223MMM4 80.9 86.2 
22 8 125.7 128.6 
23 2M7 117.6 118.6 
24 3M7 118.9 121.0 
25 4M7 117.7 118.1 
26 3E6 118.5 119.0 
27 22MM 6 106.8 115.2 
28 23MM6 115.6 116.4 
29 24MM6 109.4 115.6 
30 25MM6 109.1 112.2 
31 33MM6 112.0 115.5 
32 34MM6 117.7 114.4 
33 23ME5 115.6 111.6 
34 33ME5 118.3 110.8 
35 223MMM5 109.8 107.8 
36 224MMM5 99.2 104.2 
37 233MMM5 114.8 108.5 
38 234MMM5 113.5 117.5 
39 2233MMMM4 106.5 106.3 
40 9 150.8 149.1 
41 2M8 143.3 139.8 
42 3M8 144.2 142.1 
43 4M8 142.5 141.6 
44 3E7 143.0 142.0 

• . .  continued 



S.C. Basak et al., Predicting properties of molecules 259  

Table 3 (continued) 

Boiling point Predicted 
Observation Name" [°C] boiling point b 

45 4E7 141.2 141.5 
46 22MM7 132.7 135.7 
47 23MM7 140.5 137.8 
48 24MM7 133.5 136.0 
49 25MM7 136.0 137.1 
50 26MM7 135.2 132.0 
51 33MM7 137.3 139.6 
52 34MM7 140.6 138.3 
53 35MM7 136.0 137.3 
54 44MM7 135.2 135.8 
55 23ME6 138.0 138.4 
56 24ME6 133.8 137.6 
57 33ME6 140.6 138.5 
58 34ME6 140.4 136.3 
59 223MMM6 133.6 132.6 
60 224MMM6 126.5 131.4 
61 225MMM6 124.1 130.9 
62 233MMM6 137.7 132.7 
63 234MMM 6 139.0 139.6 
64 235MMM6 131.3 138.9 
65 244MMM6 130.6 131.7 
66 334MMM6 140.5 132.0 
67 33EE5 146.2 130.0 
68 223MME5 133.8 125.6 
69 233MME5 142.0 128.4 
70 234MEM5 136.7 133.0 
71 2233(M)5 140.3 130.6 
72 2234(M)5 133.0 133.1 
73 2244(M)5 122.3 123.3 
74 2334(M)5 141.6 132.5 

a2 = Ethane, 3 = Propane, etc.; M = methyl, E = Ethyl; 24ME6 = 2-Methyl- 
4-Ethyl hexane; structures are given in fig. 4. 

bPredicted from the three-parameter model (involving the first three PCs) of 
table 5. 

Table 4 

Summary of principal components for alkanes 

Percent of Cumulative 
PC Eigenvalue variance percent 

1 17.1 65.9 65.9 
2 5.4 20.8 86.8 
3 1.6 6.1 92.9 
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Table 5 

Multiple regression analysis for prediction of boiling points of alkanes using principal components 
(PCs) derived from topological indices (TIs) 

Standard error 
Step Variables n /R 2 F of estimate 

1 PC 1 74 95.9 1686  9 .4  

2 PC l, PC 3 74 98.1 1828 6.5 

3 PC 1, PC 2, PC 3 74 98.6 1608 5.7 

Table  6 

Correlation coefficients of TIs with principal components  for alkanes 

PC 1 PC 2 PC3 

K 1 0.99 CIC 2 - 0.95 SIC 1 0.68 

CIC o 0.99 SICz 0.90 3Z¢ 0.62 

K o 0.99 CIC 3 - 0.90 Ks - 0.53 

SIC o - 0.99 SIC 3 0.78 IC 1 0.41 

lo w 0.99 IC z 0.68 ~Z 0.28 

W 0.99 SIC 1 0.66 K 2 0.24 

1Z 0.98 IC 3 0.63 K 4 - 0.21 

° z 0.98 3;g¢ - 0.57 CIC 1 - 0.18 

IC o 0.97 2 Z - 0.37 1Z - 0.18 

CIC a 0.95 K 5 0.36 W - 0.12 

ns a 

ns 

ns 

ns 

ans = not significant. 

6.2. ALKYLBENZENES 

The values of boiling points for alkylbenzenes are given in table 7, the data 
being taken from the collection of Mekenyan et al. [11]. Table 8 summarizes the 
result of PCA, which shows that the first five PCs explain 95.7% of variance in the 
original data. Results of multiple regression analysis using PCs are given in table 9. 
It is clear from the result of regression analysis that PCs derived from TIs are capable 
of predicting boiling points of this group of compounds satisfactorily. Table 10 
presents correlations of the first five PCs with the ten individual TIs most highly 
correlated with the PCs. The pattern of correlation of TIs with the first two PCs 
seems to be analogous to that observed from alkanes. P C  3 is highly correlated with 
cluster and path/cluster terms, P C  4 is mainly correlated with higher order cluster 
terms (4Xc, 6/~'c, 4xv , 6xv ). P C  5 is not highly correlated with any particular group of 
indices. 
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Table 7 

Boiling points and predicted boiling points for alkylbenzenes 

Boiling point Predicted 
Observation Name [°C] boiling point" 

1 Benzene 80.1 80.9 
2 Toluene 110.6 110.7 
3 Ethylbenzene 136.2 134.7 
4 O-Xylene 144.4 142.0 
5 m-Xylene 139.1 140.9 
6 p-Xylene 138.4 140.5 
7 n-Propylbenzene 159.2 156.0 
8 1 -Methyl-2-ethylbenzene 165.2 164.2 
9 1-Methly-3-ethylbenzene 161.3 162.8 

10 1 -Methyl-4-ethlybenzene 162.0 163.2 
11 1,2, 3-Trimethy lbenzene 176.1 171.2 
12 1,2,4-Trimethylbenzene 169.4 170.2 
13 1,3,5 -Trimethylbenzene 164.7 168.3 
14 n-B utylbenzene 183.3 175.8 
15 1,2,-Diethylbenzene 183.4 186.4 
16 1,3-Diethylbenzene 181.1 183.9 
17 1,4-Diethylbenzene 183.8 182.8 
18 1 -Methyl-2-n-propylbenzene 184.8 184.9 
19 1 -Methyl-3-n-propylbenzene 181.8 182.7 
20 1 -Methyl-4-n-propylbenzene 183.8 182.1 
21 1,2-Dimethyl-3 -ethylbenzene 193.9 191.4 
22 1,2-Dimethyl-4-ethylbenzene 189.8 190.5 
23 1,3-Dimethyl-2-ethylbenzene 190.0 191.9 
24 1,3-Dimethyl-4-ethylbenzene 188.4 191.1 
25 1,3-Dimethyl-5-ethylbenzene 183.8 189.6 
26 1,4-Dimethyl-2-ethylbenzene 186.9 190.8 
27 1,2,3,4-Tetramethylbenzene 205.0 197.7 
28 1,2,3,5-Tetrame thylbenzene 198.2 197.1 
29 1,2,4,5-Tetramethylbenzene 196.8 196.8 

aPredicted from the three-parameter model of table 9. 

Table 8 

Summary of principal components for alkylbenzenes 

Percent of Cumulative 
PC Eigenv alue variance percent 

1 34.2 57.0 57.0 
2 15.2 25.3 82.3 
3 4.6 7.6 89.9 
4 2.4 4.0 93.9 
5 1.1 1.9 95.7 
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Table  9 

Mult iple  regression analysis for prediction of boiling points of  alkylbenzenes using principal  
components  (PCs) derived from topological indices f f l s )  

Standard error 
Step Variables n /R 2 F of estimate 

1 P C  1 29 93.3 378 7.3 

2 P C  1, P C  2 29 97.6 526 4.5 

3 P C  x, P C  z, P C  3 29 98.8 668 3.3 

4 P C  1, P C  2, P C  3, P C  5 29 99.1 632 2.9 

5 P C  1, P C  2, P C  3, P C  4, P C  5 29 99.2 584 2.7 

Table 10 

Correlation coefficients of TIs with PCs for alkylbenzenes 

P C  1 PC2 P C  3 PC4 P C s  

~o 0.98 CIC 3 0.92 SIC o - 0.68 sZc - 0.49 K 9 0.59 

°Zv 0.98 CIC 2 0.88 K 9 0.52 SIC o 0.49 S IC  o 0.36 ns" 

° Z 0.98 SIC 3 - 0.85 K 8 0.51 5Z~ - 0.49 IC  o 0.24 ns 

K o 0.97 CIC 4 0.83 K 7 0.45 SIC~ 0.42 5Zc 0.24 ns 

K 1 0.97 CIC 5 0.80 3Zc - 0.45 CIC 1 - 0.36 ns ~ 5Z~ 0.24 ns 

lo  w 0.96 C1C 6 0.80 3Z~ - 0.45 IC 1 0.36 ns 6Zv - 0.23 ns 

K 6 0.96 S1C 2 - 0.80 4Zp c - 0.38 IC  o 0.35 ns SIC 1 0.21 ns 

K 4 0.96 CIC 1 0.79 6Z~ H 0.37 CIC 5 0.31 ns K 8 0.20 ns 

W 0.95 SIC 4 - 0 . 7 5  6Zc H 0.37 CIC 6 0.31 ns IC  1 0.18 ns 

K 2 0.95 SIC s - 0.74 CIC l 0.37 CIC 4 0.29 ns 6 Z - 0.17 ns 

Ks  = not significant. 

6.3. POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) 

Table 11 gives the values of boiling points for 37 PAHs (structures in fig. 4), 
the data being taken from the collection of Karcher [87]. Table 12 presents a summary 
of PCA which shows that the first four PCs explain 96.8% of the variance in the 
calculated TIs. Correlations of PCs with boiling points of PAHs are shown in 
table 13. In case of PAHs also, the PCs are significantly correlated with the boiling 
point data. Table 14 presents the data on correlations of TIs with the first four PCs. 
The pattern of correlation is almost the same, with a notable exception. In case of 
PAHs, the first PC is also highly correlated with 3Zc (0.98), 3Z~ (0.97), 5Zc (0.97), 
and 5Z~' (0.96) parameters. 5Zc and 3Zc terms are derived from a class of subgraphs 
shown in fig. 5. The preponderance of these subgraphs in the structures of PAHs 
might be the reason for this shift in the correlation pattern of TIs with P C  1 for PAHs. 
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Table 11 

Boiling points and predicted boiling points for polycyclic aromatic hydrocarbons (PAHs) 

Boiling point Predicted 
Observation Name [°C] boiling point" 

1 Naphthalene 218 188 
2 Acenaphthylene 270 277 
3 Acenaphthene 279 258 
4 Fluorene 294 320 
5 Phenanthrene 338 340 
6 Anthracene 340 327 
7 4H-Cyclopenta(def)phenanthrene 359 361 
8 Fluoranthene 383 398 
9 Pyrene 393 410 

10 Benzo(a)fluorene 403 411 
11 Benzo(b)fluorene 398 370 
12 Benzo(c)fluorene 406 411 
13 Benzo(ghi)fluoranthene 422 460 
14 Cyclopenta(cd)pyrene 439 441 
15 Chrysene 431 446 
16 Benz(a)anthracene 425 443 
17 Triphenylene 429 44 1 
18 Naphthacene 440 430 
19 Benzo(b)fluoranthene 481 492 
20 Benzo(j)fluoranthene 480 492 
21 Benzo(k)fluoranthene 481 479 
22 Benzo(a)pyrene 496 503 
23 Benzo(e)pyrene 493 503 
24 Perylene 497 496 
25 Anthanthrene 547 551 
26 Benzo(ghi)perylene 542 553 
27 Indeno(1,2,3-cd)fluoranthene 531 522 
28 Indeno(1,2,3-cd)pyrene 534 539 
29 Dibenz(a,c)anthracene 535 523 
30 Dibenz(a,h)anthracene 535 520 
31 Dibenz(a,j)anthracene 531 520 
32 Picene 519 529 
33 Coronene 590 590 
34 Dibenzo(a,e)pyrene 592 579 
35 Dibenzo(a,h)pyrene 596 568 
36 Dibenzo(a,i)pyrene 594 568 
37 Dibenzo(a,l)pyrene 595 578 

aPredicted from the three-parameter model of table 13. 
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Table 12 

Summary of principal components analysis for polycyclic 
aromatic hydrocarbons 

Percent of Cumulative 
PC Eigenvalue variance percent 

1 40.2 63.9 63.9 
2 15.1 23.9 87.8 
3 3.9 6.2 94.0 
4 1.8 2.9 97.0 

Table 13 

Multiple regression analysis for predicting boiling points of polycyclic aromatic hydrocarbons 
(PAHs) using principal components derived from topological indices 

Standard error 
Step Variables n /R 2 F of estimate 

1 PC 1 37 93.0 466 26.7 
2 PC 1, PC 2 37 95.3 346 22.2 

3 PC t, PC 2, PC 3 37 97.5 422 16.6 

4 PC 1, PC 2, PC 3, PC 4 37 97.5 316 16.6 

Table 14 

Correlation coefficients of TIs with PCs for polycyclic aromatic hydrocarbons 

PCl PC 2 PC 3 PC4 

3Zv 0.99 CIC 2 - 0.96 5Z~tl 0.74 /C o 

K z 0.99 CIC 3 - 0.96 5Zclt 0.71 SIC o 

4Z 0.99 SIC 2 0.95 6)~vct t 0.68 6ZC H 

K 3 0.99 SIC 3 0.95 6Zc H 0.59 6)~vCH 
3 Z 0.99 SIC 4 0.93 SIC o 0.56 5Zc H 

2zv 0.99 SIC s 0.92 IC o 0.45 5Z~cH 

4Zpc 0.99 CIC4 - 0.92 CIC 1 - 0.42 CIC o 

4Zv 0.99 SIC 6 0.92 SIC l 0.41 SIC 1 

sZ 0.99 CIC s - 0.90 CIC o - 0.35 IC 1 

K 4 0.99 CIC 6 - 0.89 IC 1 0.30 as" CIC 1 

0.70 

0.63 

- 0.49 

- 0.43 

- 0.38 

- 0.31 asa 

- 0.25 as 

0.23 ns 

0.22 as 

- 0.19 as 

aas = not significant. 
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(1) (2) (3) (4) 

(5) (6) (7) (8) 

(9) (10) (11) (12) 
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(17) (18) (19) (20) 

Fig. 4. (caption on following page). 
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(21) (22) (23) (24) 

(25) (26) (27) (28) 

(29) (30) (31) (32) 

(33) (34) (35) (36) 

(37) 

Fig. 4. Hydrogen-depleted graphs of polycyclic aromatic hydrocarbons. 
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Fig. 5. G2 and G 3 represent subgraphs corresponding to 
Ze and Ze terms, respectively, of connectivity indices. 

6.4. THE COMBINED SET OF ALKANES, ALKYLBENZENES AND PAHs 

It was of interest to see how far the PCs can predict boiling points of 
the diverse set (n = 140) consisting of 74 alkanes, 29 alkylbenzenes and 
37 PAHs. Table 15 gives the summary of PCA,  which shows that the first 
six PCs with eigenvalues greater than one explain 95.2% of the variance in the 
calculated TIs. Correlations of boiling points with PCs of this combined set are 
shown in table 16. It is clear from the results that the level of predictability 
of boiling points of  the combined set is inferior to the corresponding levels 
of predictability of boiling points for alkanes (table 5), alkylbenzenes (table 9), 
or PAHs (table 13). 
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Table 15 

Summary of principal components for the combined set of 
alkanes, alkylbenzenes, and polycyclic aromatic hydrocarbons 

Percent of Cumulative 
PC Eigenvalue variance percent 

1 40.0 59.6 59.6 
2 10.8 16.2 75.8 
3 6.1 9.2 85.0 
4 3.2 4.8 89.8 
5 1.9 2.8 92.6 
6 1.7 2.6 95.2 

Table 16 

Multiple regression analysis for prediction of boiling points of the combined set of alkanes, 
alkylbenzenes, and polycyclic aromatic hydrocarbons 

Standard error 
Step Variables n /R z F of estimate 

1 PC 1 140 91.1 1411 48.2 
2 PC 1, PC 2 140 94.2 1108 39.1 
3 PC 1, PC 2, PC 3 140 96.4 1229 30.7 
4 PC 1, PC 2, PC 3, PC 4 140 97.7 1407 25.0 

5 PC 1, PC 2, PC 3, PC 4, PC 5 140 97.9 1230 23.9 

7. Discussion 

The major objectives of this paper were: (1) to investigate how far we are able 
to extract information encoded by TIs in a smaller number of parameters, viz. principal 
components (PCs), and (2) to study how far we can develop models to predict 
molecular properties from TIs or PCs derived from TIs. 

That many of the 71 TIs calculated for the three sets of compounds are highly 
intercorrelated is clear from the eigenvalues of PCs for the three groups of compounds 
and from correlations of TIs with the derived PCs (tables 6, 10, and 14). This is in  
line with our earlier observations [43-45] and findings of others [1,88, 89]. That the 
71-dimensional space consisting of 71 calculated TIs lies on a subspace of lower 
dimension is clear from PCA of the four sets of compounds. For the three sets of  
compounds, viz. alkanes, alkylbenzenes, and polycyclic aromatic hydrocarbons, the 
first three PCs explain 92.9%, 89.9%, and 94.0% of variances of the original data, 
respectively (tables 4, 8, and 12). In fact, for the first three groups of relatively 
homogeneous structures, the first few PCs with eigenvalues greater than one explain 
most of the variance in the original data. The results presented here show that we 
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can extract useful information from predictor parameters (TIs) in a relatively small 
number of orthogonal axes (PCs). 

Correlations of TIs with PC 1 show that the following indices are most highly 
correlated with PC 1 (tables 6, 10, and 14): K o - K  3, W, lWo, -f~¢o, 1Z, 2Z, 1Zv-aZv. These 
TIs are related to the generalized shape and size of molecular graphs. Analogous 
findings were reported by us earlier for other large databases [43-45]. 

PC 2 is mainly correlated with the higher-order complexity indices, viz. IC, SIC 
and CIC parameters. These indices quantitate the degree of heterogeneity of atomic 
environments in chemical graphs. Our earlier studies with a diverse set of 3692 
chemicals showed a similar pattern of correlation for PC 2 [44,45]. 

PC 3 shows some differences in the pattern of correlations with TIs. For alkanes 
(acyclic molecules) and alkylbenzenes, PC 3 is highly correlated with path-cluster 
terms of molecular connectivity indices. However, for PAHs, PC 3 is mainly correlated 
with cycle terms of connectivity parameters. This differential correlation of PC 3 
seems to be dependent on the makeup of a particular database and captures a common 
and predominant feature present in a larger number of structures in that database. A 
similar conclusion is evident from correlations of cluster terms with PC 4 for alkylbenzenes 
(table 10) and cycle terms with PC 4 for PAHs (table 14). 

Regarding the utility of PCs derived from TIs for SAR, it is clear from results 
presented in tables 5, 9, and 13 that for molecules with a reasonable range of 
structural variations, PCs are capable of predicting molecular properties. These results 
fall in the category of level 4 SAR or QSAR in our scheme of SAR (fig. 2). On the 
other hand, for the combined set of alkanes, alkylbenzenes, and PAHs, the boiling 
points could not be estimated as accurately (table 16) as with the individual structural 
classes (tables 5, 9, and 13) taken separately. The increased structural diversity of 
the combined set might be the reason for this observed difference of predictability 
of property. A similar observation was reported by us earlier for lipophilicity [90]. 

In conclusion, TIs encode useful structural information which can be conveniently 
extracted into orthogonal axes consisting of PCs. For structural classes of reasonable 
diversity, PCs performed very well in predicting boiling points, whereas the level of 
predictability decreased with increasing structural diversity of the chemicals under 
investigation. 
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